Serveur d'exploration Nissiros

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Heat flow in vapor dominated areas of the Yellowstone Plateau Volcanic Field: Implications for the thermal budget of the Yellowstone Caldera

Identifieur interne : 000037 ( Main/Exploration ); précédent : 000036; suivant : 000038

Heat flow in vapor dominated areas of the Yellowstone Plateau Volcanic Field: Implications for the thermal budget of the Yellowstone Caldera

Auteurs : Shaul Hurwitz [États-Unis] ; Robert N. Harris [États-Unis] ; Cynthia A. Werner [États-Unis] ; Fred Murphy [États-Unis]

Source :

RBID : ISTEX:8877F6C700ADD276962A1D7F861F95535BEC8023

English descriptors

Abstract

Characterizing the vigor of magmatic activity in Yellowstone requires knowledge of the mechanisms and rates of heat transport between magma and the ground surface. We present results from a heat flow study in two vapor dominated, acid‐sulfate thermal areas in the Yellowstone Caldera, the 0.11 km2 Obsidian Pool Thermal Area (OPTA) and the 0.25 km2 Solfatara Plateau Thermal Area (SPTA). Conductive heat flux through a low permeability layer capping large vapor reservoirs is calculated from soil temperature measurements at >600 locations and from laboratory measurements of soil properties. The conductive heat output is 3.6 ± 0.4 MW and 7.5 ± 0.4 MW from the OPTA and the SPTA, respectively. The advective heat output from soils is 1.3 ± 0.3 MW and 1.2 ± 0.3 MW from the OPTA and the SPTA, respectively and the heat output from thermal pools in the OPTA is 6.8 ± 1.4 MW. These estimates result in a total heat output of 11.8 ± 1.4 MW and 8.8 ± 0.4 MW from OPTA and SPTA, respectively. Focused zones of high heat flux in both thermal areas are roughly aligned with regional faults suggesting that faults in both areas serve as conduits for the rising acid vapor. Extrapolation of the average heat flux from the OPTA (103 ± 2 W·m−2) and SPTA (35 ± 3 W·m−2) to the ∼35 km2 of vapor dominated areas in Yellowstone yields 3.6 and 1.2 GW, respectively, which is less than the total heat output transported by steam from the Yellowstone Caldera as estimated by the chloride inventory method (4.0 to 8.0 GW).
Conductive, advective, and evaporative heat outputs were quantified Heat output from Yellowstone ranges from 4.9 GW to 9.1 GW Water vapor transports 4.0 to 8.0 GW of heat

Url:
DOI: 10.1029/2012JB009463


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Heat flow in vapor dominated areas of the Yellowstone Plateau Volcanic Field: Implications for the thermal budget of the Yellowstone Caldera</title>
<author>
<name sortKey="Hurwitz, Shaul" sort="Hurwitz, Shaul" uniqKey="Hurwitz S" first="Shaul" last="Hurwitz">Shaul Hurwitz</name>
</author>
<author>
<name sortKey="Harris, Robert N" sort="Harris, Robert N" uniqKey="Harris R" first="Robert N." last="Harris">Robert N. Harris</name>
</author>
<author>
<name sortKey="Werner, Cynthia A" sort="Werner, Cynthia A" uniqKey="Werner C" first="Cynthia A." last="Werner">Cynthia A. Werner</name>
</author>
<author>
<name sortKey="Murphy, Fred" sort="Murphy, Fred" uniqKey="Murphy F" first="Fred" last="Murphy">Fred Murphy</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:8877F6C700ADD276962A1D7F861F95535BEC8023</idno>
<date when="2012" year="2012">2012</date>
<idno type="doi">10.1029/2012JB009463</idno>
<idno type="url">https://api.istex.fr/document/8877F6C700ADD276962A1D7F861F95535BEC8023/fulltext/pdf</idno>
<idno type="wicri:Area/Istex/Corpus">000396</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">000396</idno>
<idno type="wicri:Area/Istex/Curation">000396</idno>
<idno type="wicri:Area/Istex/Checkpoint">000014</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Checkpoint">000014</idno>
<idno type="wicri:doubleKey">0148-0227:2012:Hurwitz S:heat:flow:in</idno>
<idno type="wicri:Area/Main/Merge">000037</idno>
<idno type="wicri:Area/Main/Curation">000037</idno>
<idno type="wicri:Area/Main/Exploration">000037</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main">Heat flow in vapor dominated areas of the Yellowstone Plateau Volcanic Field: Implications for the thermal budget of the Yellowstone Caldera</title>
<author>
<name sortKey="Hurwitz, Shaul" sort="Hurwitz, Shaul" uniqKey="Hurwitz S" first="Shaul" last="Hurwitz">Shaul Hurwitz</name>
<affiliation wicri:level="2">
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>U.S. Geological Survey, Menlo Park, California</wicri:regionArea>
<placeName>
<region type="state">Californie</region>
</placeName>
</affiliation>
<affiliation></affiliation>
</author>
<author>
<name sortKey="Harris, Robert N" sort="Harris, Robert N" uniqKey="Harris R" first="Robert N." last="Harris">Robert N. Harris</name>
<affiliation wicri:level="2">
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>College of Oceanic and Atmospheric Sciences, Oregon State University, Corvallis, Oregon</wicri:regionArea>
<placeName>
<region type="state">Oregon</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Werner, Cynthia A" sort="Werner, Cynthia A" uniqKey="Werner C" first="Cynthia A." last="Werner">Cynthia A. Werner</name>
<affiliation wicri:level="2">
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Alaska Volcano Observatory, U.S. Geological Survey, Anchorage, Alaska</wicri:regionArea>
<placeName>
<region type="state">Alaska</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Murphy, Fred" sort="Murphy, Fred" uniqKey="Murphy F" first="Fred" last="Murphy">Fred Murphy</name>
<affiliation wicri:level="2">
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>U.S. Geological Survey, Menlo Park, California</wicri:regionArea>
<placeName>
<region type="state">Californie</region>
</placeName>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j" type="main">Journal of Geophysical Research: Solid Earth</title>
<title level="j" type="alt">JOURNAL OF GEOPHYSICAL RESEARCH: SOLID EARTH</title>
<idno type="ISSN">0148-0227</idno>
<idno type="eISSN">2156-2202</idno>
<imprint>
<biblScope unit="vol">117</biblScope>
<biblScope unit="issue">B10</biblScope>
<biblScope unit="page-count">18</biblScope>
<date type="published" when="2012-10">2012-10</date>
</imprint>
<idno type="ISSN">0148-0227</idno>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">0148-0227</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Advective</term>
<term>Advective heat flux</term>
<term>Advective heat output</term>
<term>Aerial photos</term>
<term>Auxiliary material</term>
<term>Average heat flux</term>
<term>Bottom hole temperatures</term>
<term>Brantley</term>
<term>Bromley</term>
<term>Caldera</term>
<term>Chiodini</term>
<term>Chloride flux</term>
<term>Chloride inventory method</term>
<term>Conductive</term>
<term>Conductive heat flux</term>
<term>Conductive heat output</term>
<term>Conductivity</term>
<term>Core samples</term>
<term>Desiccant</term>
<term>Desiccant container</term>
<term>Diffusivity</term>
<term>Diurnal temperature variations</term>
<term>Fournier</term>
<term>Fumaroles</term>
<term>Future studies</term>
<term>Geol</term>
<term>Geological survey</term>
<term>Geophys</term>
<term>Geotherm</term>
<term>Geothermal</term>
<term>Ground surface</term>
<term>Heasler</term>
<term>Heat flow</term>
<term>Heat flux</term>
<term>Heat flux estimates</term>
<term>Heat output</term>
<term>Heat output estimates</term>
<term>Heat transport</term>
<term>High concentrations</term>
<term>High heat flux</term>
<term>Hochstein</term>
<term>Hurwitz</term>
<term>Hydrothermal</term>
<term>Jaworowski</term>
<term>July</term>
<term>June</term>
<term>Liquid water</term>
<term>Lowenstern</term>
<term>Magmatic</term>
<term>Magmatic system</term>
<term>Menlo park</term>
<term>Obsidian</term>
<term>Obsidian pool</term>
<term>Opta</term>
<term>Overnight experiments</term>
<term>Parent fluid</term>
<term>Permeability</term>
<term>Permeability layer</term>
<term>Pitt</term>
<term>Plateau</term>
<term>Pure water</term>
<term>Qcond</term>
<term>Solfatara</term>
<term>Solfatara plateau</term>
<term>Solfatara volcano</term>
<term>Spring basin</term>
<term>Spta</term>
<term>Standard deviation</term>
<term>Subsurface</term>
<term>Temperature gradient</term>
<term>Temperature gradients</term>
<term>Temperature measurements</term>
<term>Temperature variations</term>
<term>Temperaturedepth measurements</term>
<term>Thermal activity</term>
<term>Thermal area</term>
<term>Thermal areas</term>
<term>Thermal budget</term>
<term>Thermal conductivity</term>
<term>Thermal diffusivity</term>
<term>Thermal features</term>
<term>Thermal pools</term>
<term>Thermal structure</term>
<term>Total heat output</term>
<term>Vapor</term>
<term>Vapor temperature</term>
<term>Volcano</term>
<term>Volcanol</term>
<term>Water saturation</term>
<term>Water surface</term>
<term>Water vapor</term>
<term>Weather station</term>
<term>Wind speed</term>
<term>Yellowstone</term>
<term>Yellowstone caldera</term>
<term>Yellowstone lake</term>
<term>Yellowstone plateau</term>
<term>Ypvf</term>
</keywords>
<keywords scheme="Teeft" xml:lang="en">
<term>Advective</term>
<term>Advective heat flux</term>
<term>Advective heat output</term>
<term>Aerial photos</term>
<term>Auxiliary material</term>
<term>Average heat flux</term>
<term>Bottom hole temperatures</term>
<term>Brantley</term>
<term>Bromley</term>
<term>Caldera</term>
<term>Chiodini</term>
<term>Chloride flux</term>
<term>Chloride inventory method</term>
<term>Conductive</term>
<term>Conductive heat flux</term>
<term>Conductive heat output</term>
<term>Conductivity</term>
<term>Core samples</term>
<term>Desiccant</term>
<term>Desiccant container</term>
<term>Diffusivity</term>
<term>Diurnal temperature variations</term>
<term>Fournier</term>
<term>Fumaroles</term>
<term>Future studies</term>
<term>Geol</term>
<term>Geological survey</term>
<term>Geophys</term>
<term>Geotherm</term>
<term>Geothermal</term>
<term>Ground surface</term>
<term>Heasler</term>
<term>Heat flow</term>
<term>Heat flux</term>
<term>Heat flux estimates</term>
<term>Heat output</term>
<term>Heat output estimates</term>
<term>Heat transport</term>
<term>High concentrations</term>
<term>High heat flux</term>
<term>Hochstein</term>
<term>Hurwitz</term>
<term>Hydrothermal</term>
<term>Jaworowski</term>
<term>July</term>
<term>June</term>
<term>Liquid water</term>
<term>Lowenstern</term>
<term>Magmatic</term>
<term>Magmatic system</term>
<term>Menlo park</term>
<term>Obsidian</term>
<term>Obsidian pool</term>
<term>Opta</term>
<term>Overnight experiments</term>
<term>Parent fluid</term>
<term>Permeability</term>
<term>Permeability layer</term>
<term>Pitt</term>
<term>Plateau</term>
<term>Pure water</term>
<term>Qcond</term>
<term>Solfatara</term>
<term>Solfatara plateau</term>
<term>Solfatara volcano</term>
<term>Spring basin</term>
<term>Spta</term>
<term>Standard deviation</term>
<term>Subsurface</term>
<term>Temperature gradient</term>
<term>Temperature gradients</term>
<term>Temperature measurements</term>
<term>Temperature variations</term>
<term>Temperaturedepth measurements</term>
<term>Thermal activity</term>
<term>Thermal area</term>
<term>Thermal areas</term>
<term>Thermal budget</term>
<term>Thermal conductivity</term>
<term>Thermal diffusivity</term>
<term>Thermal features</term>
<term>Thermal pools</term>
<term>Thermal structure</term>
<term>Total heat output</term>
<term>Vapor</term>
<term>Vapor temperature</term>
<term>Volcano</term>
<term>Volcanol</term>
<term>Water saturation</term>
<term>Water surface</term>
<term>Water vapor</term>
<term>Weather station</term>
<term>Wind speed</term>
<term>Yellowstone</term>
<term>Yellowstone caldera</term>
<term>Yellowstone lake</term>
<term>Yellowstone plateau</term>
<term>Ypvf</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract">Characterizing the vigor of magmatic activity in Yellowstone requires knowledge of the mechanisms and rates of heat transport between magma and the ground surface. We present results from a heat flow study in two vapor dominated, acid‐sulfate thermal areas in the Yellowstone Caldera, the 0.11 km2 Obsidian Pool Thermal Area (OPTA) and the 0.25 km2 Solfatara Plateau Thermal Area (SPTA). Conductive heat flux through a low permeability layer capping large vapor reservoirs is calculated from soil temperature measurements at >600 locations and from laboratory measurements of soil properties. The conductive heat output is 3.6 ± 0.4 MW and 7.5 ± 0.4 MW from the OPTA and the SPTA, respectively. The advective heat output from soils is 1.3 ± 0.3 MW and 1.2 ± 0.3 MW from the OPTA and the SPTA, respectively and the heat output from thermal pools in the OPTA is 6.8 ± 1.4 MW. These estimates result in a total heat output of 11.8 ± 1.4 MW and 8.8 ± 0.4 MW from OPTA and SPTA, respectively. Focused zones of high heat flux in both thermal areas are roughly aligned with regional faults suggesting that faults in both areas serve as conduits for the rising acid vapor. Extrapolation of the average heat flux from the OPTA (103 ± 2 W·m−2) and SPTA (35 ± 3 W·m−2) to the ∼35 km2 of vapor dominated areas in Yellowstone yields 3.6 and 1.2 GW, respectively, which is less than the total heat output transported by steam from the Yellowstone Caldera as estimated by the chloride inventory method (4.0 to 8.0 GW).</div>
<div type="abstract">Conductive, advective, and evaporative heat outputs were quantified Heat output from Yellowstone ranges from 4.9 GW to 9.1 GW Water vapor transports 4.0 to 8.0 GW of heat</div>
</front>
</TEI>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Alaska</li>
<li>Californie</li>
<li>Oregon</li>
</region>
</list>
<tree>
<country name="États-Unis">
<region name="Californie">
<name sortKey="Hurwitz, Shaul" sort="Hurwitz, Shaul" uniqKey="Hurwitz S" first="Shaul" last="Hurwitz">Shaul Hurwitz</name>
</region>
<name sortKey="Harris, Robert N" sort="Harris, Robert N" uniqKey="Harris R" first="Robert N." last="Harris">Robert N. Harris</name>
<name sortKey="Murphy, Fred" sort="Murphy, Fred" uniqKey="Murphy F" first="Fred" last="Murphy">Fred Murphy</name>
<name sortKey="Werner, Cynthia A" sort="Werner, Cynthia A" uniqKey="Werner C" first="Cynthia A." last="Werner">Cynthia A. Werner</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Terre/explor/NissirosV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000037 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000037 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Terre
   |area=    NissirosV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     ISTEX:8877F6C700ADD276962A1D7F861F95535BEC8023
   |texte=   Heat flow in vapor dominated areas of the Yellowstone Plateau Volcanic Field: Implications for the thermal budget of the Yellowstone Caldera
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Jan 16 00:18:27 2018. Site generation: Mon Feb 1 22:09:13 2021